Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. 94251

Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. 94251
sku: 265059776
ACCORDING TO OUR RECORDS THIS PRODUCT IS NOT AVAILABLE NOW
1,672.00 грн.
Shipping from: Ukraine
   Description
[html]Благодаря серии выдающихся достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на данных. Новое издание книги-бестселлера, опирающееся на конкретные примеры, минимум теории и готовые фреймворки Python производственного уровня, поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы освоите широкий спектр методик, которые можно быстро задействовать на практике. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования. Весь код доступен на GitHub. Он был обновлен с учетом TensorFlow 2 и последней версии Scikit-Learn. Особенности книги Изучите основы машинного обучения на сквозном проекте с применением Scikit-Learn и Pandas Постройте и обучите нейронные сети с многочисленными архитектурами для классификации и регрессии, используя TensorFlow 2 Ознакомьтесь с выявлением объектов, семантической сегментацией, механизмами внимания, языковыми моделями, порождающими состязательными сетями и многим другим Исследуйте Keras API — официальный высокоуровневый API-интерфейс для TensorFlow 2 Запускайте в производство модели TensorFlow с применением Data API из TensorFlow, стратегий распределения, TF Transform и TF Serving Развертывайте модели на платформе AI Platform инфраструктуры Google Cloud или на мобильных устройствах Используйте методики обучения без учителя, такие как понижение размерности, кластеризация и обнаружение аномалий Создавайте автономные обучающиеся агенты с помощью обучения с подкреплением, в том числе с применением библиотеки TF-Agents Об авторе Орельен Жерон — консультант и инструктор по машинному обучению. Бывший работник компании Google, с 2013 по 2016 год он руководил командой классификации видеороликов YouTube. С 2002 по 2012 год он также был основателем и руководителем технического отдела в компании Wifirst (ведущего поставщика услуг беспроводного доступа к Интернету во Франции).[/html]
   Technical Details
categoryTitle: Научная и техническая литература
   Price history chart & currency exchange rate